A superstar in the making and Clair de Lune SE gets the credit!! Creme de la Creme SE is qualified for his first 1*!!

Our Clair de Lune SE son, Creme de la Creme SE, 6, and partner Alexis Helffrich. Creme and Alexis were 1st after dressage with a 26.9 score, double clear in Stadium, and finished 3rd overall with 4 time faults in XC at his 2nd Preliminary event ever at Rebecca Farm last weekend. It was a HUGE and very competitive class of 33!!! Creme was a FEH Champion as a youngster with a 89.89% score!

Two Clair de Lune SE weanlings win BWP high point and reserve!!

2018 BWP Keuring in Newberg, Oregon. We are proud to be a part of the #1 breed registry in the world!! Yesterdays’s results once again showed that Clair de Lune SE’s foals had top consistant scores in the 80’s and that he is producing “modern type” foals with “correct legs”, “good conformation” and good gaits.
Our Pikadero mare, Piktorial, was awarded her “elite” status after producing 9 foals, all doing excellent in sport: including 2 approved stallions, 2 1.50 mares, a 2** gelding, the #1 North American bred YEH for 2017, a 5 yr old Young Jumper Finals Champion, and numerous FEH and YEH Champions! It was wonderful to see Chris Sallee and Boudewijn Schepers again and are excited to present our Darco son, out of Elegance B and conceived via the ICSI process, for approvals next year.

Our For Pleasure/Darco mare, For His Glory SE wins her first Grand Prix with Taryn Nolte in the irons!!


Taryn Nolte impresses at the 47th annual PJA Jumper Show

The $24,975.00 PJA Grand Prix was the featured event of the 47th annual PJA Jumper Show. The three day one ring all jumper show was held at the beautiful Swan Lake Stables show grounds just outside historic Gettysburg, Pa. As the temperatures reached 90 degrees, management waived jackets so the riders could comfortably negotiate the Skip Bailey designed course.

The course consisted of 13 numbered fences with three double combinations resulting in 16 jumping efforts, with broken lines and roll back turns, 10 horses of the original 27 were able to proceed to the jump off.

First to return was Manuel Torres on Christofolini, however an early miscommunication resulted in elimination. Next to go was Calisto 26 with Candice King riding and she finished with a 4 fault round in a time of 43.968. Sulu Rose-Reed was next in the ring riding Denali and jumped a fast clean round in a time of 43.340 to take the early lead. Alex Matz returned on the first of his two mounts riding Payback and finished just off the pace, with a clean round in a time of 43.349. Next to challenge was Jennifer Brennan aboard Mac and they went clear in a time of 43.665.

Lucy Matz was next to go aboard Cardella and had a great time of 41.308 but unfortunately with 4 faults. Talks Cheap and Grace Long were next in the order and jumped a clear round in 46.370. Moving up in the order, to give Alex more time for his second ride, was Taryn Nolte aboard For His Glory SE and they blazed the course with a clear ride in the new leading time of 41.523. Back on his second ride Cashew CR was Alex Matz putting in a real challenge but finished just off the pace with a clear round in a time of 42.212. Last to return was Amanda Forte aboard MHS Automatic and recorded the fastest time of the day but with 8 faults.

Taryn said that this was the second Grand Prix for For His Glory SE (For Pleasure X Darco) and she was over whelmed with excitement.


Olympic bloodlines!! SE Farm proudly offers Oakley’s Hunt SE (Hunter/Heraldik XX x Animo/Alme) for sale.


Seen above is Oakley’s sister, Milagro SE, (Clair de Lune SE x Animo/Alme), rated the #2 North American bred YEH for 2017.

Oakley’s Hunt SE (Hunter/Heraldik XX X Animo/Alme)
Oakley is a 2014, 16.2 hh gelding out of a proven dam line that has sired numerous upper level showjumpers. In 2017, sired by Clair de Lune SE, she produced the #2 North American bred 5 year old young event horse, Milagro SE, owned in a partnership with Taryn Nolte. Oakley’s sire is by Heraldik XX, who was the #1 sire of event horses for 4 yrs in a row from 2010 to 2013. Heraldik XX is the grandsire of the infamous WEG Eventing gold medalist, La Biosthetique Sam and the sire of 2 horses from the 2008 German Gold Medal Team.
Oakley is a beautiful mover, great mind, and a pedigree that is a sure bet for eventing or showjumping! He currently has 30 days under saddle. Since he is only 4, he still has some growing to do, and will probably finish at 17 hh.

Darco and For Pleasure semen available for 2018 via ICSI


In the Intracytoplasmic Sperm Injection procedure, an oocyte, or egg, is collected from a donor mare’s follicle prior to ovulation and cultured until maturity. Once mature, the oocyte is fertilized in a laboratory via micro-injection of a single sperm cell. The fertilized oocyte should start to divide to become an embryo with the first cell division occurring 24-30 hours after sperm injection. The blastocyst stage is reached after seven to 10 days of culture in an incubator. (see last image below for stages of fertilization) The embryo can then be transferred to the uterus of a recipient mare, shipped to another facility for transfer or frozen for future use.

Common utilizations of ICSI occur in mares with persistent fertility problems preventing embryo production and in stallions with limited sperm availability. Since only a single sperm cell is injected, ICSI can utilize very small quantities of frozen semen.


Recovery of an oocyte from a dominant follicle can be expected on approximately 75% of attempts. Immature oocytes can often be collected from smaller follicles at the same time. Oocytes fertilized by Intracytoplasmic Sperm Injection typically divide and grow on 70-80% of attempts, and of those, 20-30% will grow in culture to the blastocyst stage for non-surgical transfer.

Oocyte quality and vigor tend to decline with the donor mare’s age, so older donors typically have lower success rates than younger mares. Oocyte numbers can be a limiting factor as well―some mares have many small follicles each cycle which facilitate the recovery of multiple oocytes, while others have only one or two follicles present in each cycle.

On average, a donor mare will require three cycles to establish a pregnancy. This can vary as some mares establish multiple pregnancies in their first cycle, while others with decreased oocyte viability may prove to be more challenging.

                                                                  HOW ICSI WORKS


Oocytes can either be recovered just prior to ovulation from the large dominant follicle each cycle or from the smaller subordinate follicles at any time.   Most commonly we collect from both the dominant and subordinate follicles at the same time each cycle.  A typical mare will have one dominant and 7-8 subordinate follicles each cycle.  The average oocyte collection rate is about 75% per follicle for the dominants and 60-70% for the subordinates giving an average yield of .7 oocytes from the dominant follicle and 5 from the subordinates per cycle.  This is highly variable from mare to mare, as some mares have many subordinate follicles and some quite few; older mares tend to have somewhat fewer subordinate follicles.  The oocyte from the dominant follicle is usually of higher quality but since the oocytes from the subordinate follicles are generally more numerous approximately 2/3 of the pregnancies produced come from these oocytes from the small follicles.

When the oocytes have completed maturation (overnight for those from dominant follicles or about 2 days for those from subordinate follicles) the cumulus cells are removed to allow visualization of the oocyte for injection.



Oocytes are generally recovered as a cumulus-oocyte complex, an oocyte surrounded by the cumulus cells that nourish it, dislodged from the follicle wall.  Initially as a follicle grows, the cumulus cells are tightly adhered to the follicle wall and the mass of cells itself is very dense; the cells are very close together.  As the follicle grows and becomes a dominant follicle the cumulus mass starts to expand as the cells secrete an extracellular matrix that spreads them apart.  Nearing ovulation this expansion makes the attachment to the follicle wall weaker and weaker so that during ovulation the oocyte can be swept from the follicle into the oviduct.  The loosening of the attachment makes the oocyte somewhat easier to recover nearing ovulation, although as the follicle enlarges it is more difficult to create the turbulence necessary to dislodge the oocyte.  For these reasons, aspiration of the immature follicles with their firmly attached cumulus-oocyte complex, tend to have the highest recovery rate when they are between 10 and 20 mm in size, while the dominant follicles are best aspirated less than 14 or 15 hours before an expected ovulation.

Semen used for ICSI can be fresh, fresh-cooled, or frozen, but frozen is most commonly used.  Since only a few cells are needed, generally just the tip of a frozen semen straw (about 1/10th of a straw) is cut off to thaw.  This leaves the other 90% frozen to use in the future.  The cells are processed in several different ways, but nearly always use a “swim-up” to help select motile cells.  This is performed by placing the sperm sample at the bottom of a tube of culture medium, allowing time for the spermatozoa to swim, and the sample is taken farther up the tube.

Sperm swim up is usually preformed with a small section of a frozen semen straw that is
thawed at the bottom of the swim up medium. motile sperm then swim up from the layer at
the bottom. A sample obtained from the medium/semen interface will contain largely clean
motile sperm.


Individual sperma are selected under the microscope and immobilized by crushing the tail with the injection pipette.  Once in the oocyte, this damage to the cell membrane covering the tail will facilitate the passage of “sperm factor” into the oocyte.  Sperm factor is a chemical that is critical in activating the oocyte to start the process of cell division.

For the ICSI procedure itself suction on the holding pipette is used to position and stabilize the oocyte.  The oocyte is positioned so that the injection will take place away from the polar body (extruded excess genetic material but near the genetic material still in the cell) and into an area of good visualization if possible.

Once the pipette enters the ooplasm (cytoplasm of the oocyte) some ooplasm is aspirated into the pipette to assure that the oolemma (oocyte cell membrane) has been completely penetrated and to help with oocyte activation.  The oolemma is very elastic and can be difficult to puncture, even with the pipette inserted well into the oocyte.  In this video there are two oocytes injected.  In the first, the oolemma was pierced by the pipette itself and can be seen sliding back into its original position before the sperm was injected.  The oolemma did not rupture spontaneously in the second oocyte so aspiration was used to pierce it.  The oolemma can be seen being aspirated into the pipette before it ruptures and allows aspiration of ooplasm and the ejection of the sperm.

Once fertilized, oocytes are placed in culture in micro-droplets under a layer of mineral oil.  They are maintained in an incubator with increased carbon dioxide and decreased oxygen concentrations to regulate proper temperature, pH, and to reduce oxidative damage.  The mineral oil overlay prevents evaporation of the culture medium and helps decrease the chance of contamination.

When successfully fertilized and activated, an oocyte quickly starts making rapid and dramatic changes.  One of the first events that can be visualized is extrusion of excess genetic material in the second polar body, often within 3-4 hours following fertilization.


 Approximately 70% of injected oocytes divide (cleave). The first cell division takes place within
24-30 hours.  Generally the faster dividing embryos are healthier and are more likely to
continue development normally.  Subsequent divisions should occur approximately every 24 hr

Good quality ICSI produced early blastocsyts should have an approximately 80% pregnancy rate when transferred non-surgically to a recipient mare. The early embryonic loss of pregnancy is slightly higher in ICSI produced embryos than in naturally occurring pregnancies.